

Model number
KHU8-DW-1.D

## C $\epsilon$

## Features

- Rotational speed monitoring up to 5 kHz
- 1 pre-select value with relay output and LED indicator
- Multi-range power pack
- 2-, 3-, 4-wire and NAMUR sensors as well as rotary encoder connectable
- Start-up delay
- Auxiliary power output for sensors
- Connection via Power Rail
- Menu driven operation via 4 front keys
- Period measurement
- Indication in Hz or $1 / \mathrm{min}$
- Password protection
- Output signal can be inverted
- Display devices can be set between 0.1 ... 2.5 sec .
- Protection degree IP20


## Technical data

| General specifications |  |
| :---: | :---: |
| Pre-selection | single |
| Programming | keypad-driven menu |
| Supply |  |
| Rated voltage | 24 V DC +15 \%/-10 \%; $115 \mathrm{~V} \mathrm{AC} \pm 10$ \%; 230 V AC $\pm 10$ \% |
| Power consumption | $5 \mathrm{~W} / 5 \mathrm{VA}$ |
| Indicators/operating means |  |
| Type | 7-segment LED display, red |
| Number of decades | 4 |
| Display value | digit height 7 mm , in Hz or $1 / \mathrm{min}$ |
| LED yellow | switching state |
| Decimal point | freely adjustable |
| Accuracy | $\pm 1$ digit |
| Input |  |
| Control input | NAMUR: $1,2 \mathrm{~mA} \leq \mathrm{x} \leq 2,1 \mathrm{~mA}$ (terminal 8, 9), max. 8.2 V and 6.5 mA , impedance 1.2 kOhm <br> PNP sensor: 12 V (terminal 15), max. 30 V , impedance 2.8 kOhm <br> NPN sensor: 12 V (terminal 14), impedance 3.3 kOhm |
| Trigger input | 12 V (terminal 2), max. 30 V , impedance 2.8 kOhm |
| Pulse duration | $20 \mu \mathrm{~s}$ |
| Output |  |
| Relay | 1 changeover contact |
| Sensor supply | $24 \mathrm{~V} \mathrm{DC} \pm 10 \%, 30 \mathrm{~mA}$, short-circuit proof |
| Contact loading | $\begin{aligned} & 250 \mathrm{~V} \mathrm{AC} / 2 \mathrm{~A} / \cos \varphi \geq 0.7 \\ & 40 \mathrm{~V} \mathrm{DC} / 2 \mathrm{~A} \end{aligned}$ |
| Duration of momentary impulse | 0 ... 999.9 s |
| Measuring error | up to $100 \mathrm{~Hz}<0.1 \%$ up to $1 \mathrm{kHz}<0.3 \%$ up to $5 \mathrm{kHz}<1.5 \%$ |
| Delay times |  |
| Time delay before availability | $\leq 400 \mathrm{~ms}$ |
| Start-up override | 0,1 .. 999,9 s (External trigger signal) |
| Relay | $\leq 20 \mathrm{~ms}$ |
| Timer function | ON/OFF delay |
| Ambient conditions |  |
| Ambient temperature | $-25 \ldots 70{ }^{\circ} \mathrm{C}$ (248 ... 343 K$)$ |
| Storage temperature | -40 ... $85^{\circ} \mathrm{C}$ (233 ... 358 K ) |
| Mechanical specifications |  |
| Lifetime | $30 \times 10^{6}$ switching cycles |
| Connection | self-opening apparatus connection terminals, max. core cross-section $0.34 \ldots 2.5 \mathrm{~mm}^{2}$ |
| Dimensions | $40 \mathrm{~mm} \times 92.5 \mathrm{~mm} \times 115 \mathrm{~mm}$ |
| Construction type | modular terminal housing in Makrolon, System KH |
| Mounting | snap-on to 35 mm standard rail or screw fixing |

## Indicating / Operating means / Dimensions



## Electrical connection



## Notes

## Device description

The KHU8-DW-1.D Speed Monitor is a device for the indication and monitoring of periodic signals, which occur in almost all areas of automation and process technology, i. e. of frequencies in general and rotational speeds in special cases. The input signals are evaluated in accordance with the cycle method, i. e. by measurement of the period of oscillation and conversion into frequency or rotational speed by a very fast $m$ controller.

The frequently occurring special case of rotational speed measurement has been paid particular attention in the development of the device. Thus indication and input can be either in $\mathbf{H z}$ or in $\mathbf{1 / m i n}$. It is also possible, in applications involving slow processes, in which the signal sensors provide many pulses per revolution, to operate automatically with the actual rotational speed of the drive by specifying the number of pulses per revolution.

The indication of the measured value is provided on a 4-digit, 7-segment LED display on the front of the device, with up to 3 places after the decimal point.

The monitoring function is achieved on the basis of a limit value, whose upper and lower hysteresis value is freely selectable within the respective display range.
The output signal is generated by a relay with a changeover contact, when the hysteresis limits are violated. Thanks to a high switching capability, the relay output can be used for the direct activation of an actuating element or as an input signal for a higher level control system. Also, the switching status of the relay is indicated by means of a yellow LED on the front of the device.
A function block is connected in series with the relay, which 10 provides for various timer functions and thus obviates the requirement for the subsequent addition of a timer relay. In addition to the pull-in and drop-out delay, passing make contact and and pulse extension, the direction of operation of the relay, i. e. monitoring of speed fluctuation about a nominal value, can also be selected.
The built-in start-up override, initiated when the power supply is switched on, or by an external signal, prevents error signals during the running up of the monitored system.

The speed monitor can be supplied with 115 V AC, 230 V AC or by a 24 V DC supply and when connected to an alternating voltage it provides a 24 V DC source to supply the signal sensor.

All current two, three and four-wire proximity switches and incremental encoders can be accepted as the signal sensor.In addition, two terminals are reserved for the connection of proximity switches in accordance with DIN 19234 (NAMUR).

## Terminal assignment

T. 1: $\quad$ Signal sensor supply GND
T. 2: Trigger input for start-up override
T. 3: $\quad$ Signal sensor supply +24 V DC
T. 4: $\quad$ Power supply + 24 V DC
T. 5: Power supply GND
T. 6: Not connected.
T. 7: $\quad$ Signal sensor supply GND
T. 8: NAMUR input L-
T. 9: NAMUR input L+
T. 10: Relay make contact, NO
T. 11: Relay break contact, NC
T. 12: Relay root, COM
T. 13: Signal sensor supply +24 V DC
T. 14: Signal sensor NPN input
T. 15: $\quad$ Signal sensor PNP input
T. 16: Power supply L1, 230 V AC
T. 17: Power supply L1, 115 V AC
T. 18: Power supply N

Timer functions, reversal of operating direction of the output relay


## Operating principle



